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COMPUTER-SYNTHESIZED OPTICAL ELEMENTS FOR
CORRECTING ABERRATIONS OF IMAGING SYSTEMS
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Abstract—An analysis is presented of the use of planar computer-optical elements to correct the aberrations
of single and multicomponent lens systems. In the paraxial approximation, an equation for the phase
function of a corrector plate is derived. For a correcting device synthesized with a finite number of
discretization points and phase quantization levels, estimates of the Strehl definition, resolution and mean
square aberration are obtained with account of the diffraction phenomena. Qualitative tables illustrate
the effectiveness of aberration control achieved with computer-synthesized optical elements for a thin lens.

A substantial improvement of wave aberration control offered by systems with phase layers [1, 2]
has been hard to achieve because of difficulties in the deposition of phase layers into zones with a
desired profile. This shortcoming may be overcome with the aid of “computer optics” technology
developed for the synthesis of wavefront correctors [3]. For axially symmetric holographic optical
elements, the fabrication procedures have been discussed by Gan [4] and Bobrov et al. [5].

The present paper considers the effect of discretization and phase quantization on the image
quality by correcting devices which in general have no rotational symmetry. The analysis is
illustrated by estimates of the Strehl definition and the resolution of a corrector plate designed to
cancel the aberrations of a single lens. For the sake of simplicity the calculation is carried out for
the case of an infinitely distant object.

(i) Let a thin optical element placed in a domain G of the plane u = (4, v) form an image in the
region D of the plane x = (x, y) at a distance f,,. The object is described by the angular coordinates
0=(..0,),

f,=sinf,, 0,=sin 08,, 1)

where 7/2 — 0, and n/2 — 0, are the angles that a ray makes with the u and v axes, respectively.
Denote by b(u, 8) the eiconal transmission function of a thin element, i.e. the variation of optical
path length for the ray passing point u at an angle 6.

In the Gaussian approximation, an object point 6 is imaged to the point

xg = R,0, (2)

where R, = fo./1 — 6* is the radius of the Gaussian reference sphere. 3)
By virtue of the eiconal equation [6] one can readily obtain for the transverse spherical aberration
vector

8+ V.b(u, 0)
JTT0+ Vb(w, 017

xk(u, ) =u—x,+ fo 4)

where V, = <£, i>
ou ov
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Fig. 1.

The wave aberration can be recovered [6, 7] by the formuila
1 u
B(u,0)=By+— | «(u',6)dwu, (%)
0 Jvug
where the integral is taken along any curve passing through points u, and u.
In the paraxial approximation, when 6 tends to zero and |V,b| « 1, we have

k(u,0)~u+ f,V,b(u,0), 6)

that is,
u2
B(u, 8) = By + —+ b(u, 8). )
2fo
Therefore, the paraxial wave aberration of a thin element coincides with the eiconal transmission
function b(u, 0) of this element less the transmission function —u?/2f,, of the paraxial lens.

(ii) Let the thin optical element consist of a thin lens of focal length f, (a singlet or a cemented
piece) tightly joined in tandem with a correcting device to be synthesized, as shown in Fig. 1. If
b, (u, 8) is the wave aberration of the lens, then the wave aberration of the corrector plate B.(u, )
is described by the equation

B,(u, 8) ~ —b(u,0), (8)

where the equality is achieved at some @ for all u.
For axially symmetric optical systems of free aperture 2q, the function B,(u, #) may be written,
accurate to third-order aberrations, as [6]

1 [u?\? 0-u\?2 1 6% 6%(0-u) (6-uw?
B0 =bo+B-(~) +c(Z2) +-Dp2 Y —E _F 9
(1, 6) =beo 4 <a2) (a0m> 2 0242 03a 6,.a° ®)

where B, C, D, E and F are the aberration coefficients corresponding to the spherical aberration,
astigmatism, curvature of field, distortion and coma; and 26,, is the maximum field of view.

For the purpose of automated design the corrector plate is represented as an N; x N, array with
the resolution

51=2a/N1a

10
52=20/N2, ( )

and m, binary digits being used to encode one point of this discrete stencil. Accordingly, the eiconal
transmission of the corrector plate has M =2™° gradations. Argument sampling and level
quantization give rise to the specific unremovable effects that control the limiting characteristics
of the corrector plate.

(iii) Because the actual wave aberration of the corrector plate, B.(u, ) differs from that required
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by Eq. (8), and the lens-corrector system will have the residual aberration
B(u, 6) = B,(u, 8) — B.(u, 0). (11)

The point spread function (PSF) of this system, therefore, will be somewhat different from the PSF
of the perfect aberration-free system. The intensity I at the centre x, of the blur spot is the fraction

) S=1/I, (12)
of the intensity of the perfect system [6]
a4
Ip=Eol* -5, (13)
4] 0 Azfo

whereas the size A as a function of the level 0 < 6 < 1 becomes larger than the blur of the perfect
system

Ao =280 fo/ka, k=2m/. (14)

By way of illustration, &, ; =2.73 and o 5 =0.94.
When residual aberrations are small, the Strehl ratio may be found as [6]

S =exp(—k*B*)~1—k*B?, (15)

where B? is the mean square aberration.
By equating the light flux passing through the blur spots in both systems under consideration
we get

A=Ay//S. (16)

In the paraxial approximation, the residual aberration is the error of a piecewise-linear
approximation and may be estimated [3] by the formula

12 52

= +

12M 12

R2

J |Vubl(u’0)|2d2ua (17)
G

where 6 = max (6, 6,).
After straightforward but unwieldy manipulations, for primary aberrations Eqs (9) and (17) yield

a8 (B* #*[B(C+D) 5F2] 94[D2+2DC—2C2 ] 6° EZ}
o A O ) T T D | T S+ EF [+ o (18
12M2+6a2{8 +9,3,[ 3 6 | 6 4 gy Y

By way of example consider the case of a corrector plate attached to a planoconvex thin lens
with radius of curvature R and refractive index n. Denoting V = 1/nand f, = R/(n— 1) and making
use of the formulae for thin lens aberration coefficients we get

A2 52[ 1 a®  45+V a‘*e2 (2+V)2+1a294].

m

R2

(19)

= +— S+ —
12M2 6 | 32(1—V)*f2 12(1-V) f& 16 f3

Equations (12)-(18) and, in particular, Eq. (19) relate the parameters of corrector plate
discretization (5 and M) and optical system parameters (field of view 8,,, aperture ratio 2a/fo, focal
length f,, operating wavelength 4, and n) to the system’s performance measures such as angular
resolution A/f, and Strehl definition S. The computational data summarized in Tables 1 and 2
provide an insight into the dependence of the lens-corrector system on the aforementioned
parameters and give guidelines on the resolution requirement of the mask generating facility and

Table 1. 6, = 30°, 2a/f,=1:5, M =8 and f, =50 mm

& (um) 5 10 15 25 35 50
Alfo 092 095 0.9 117 1.48' 248
s 0.93 0.88 0.79 0.58 0.36 0.13
A (um) 131 13.4 142 16.7 211 358
B /24 A/17 /13 /8 A/6 /4
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Table 2. 6,, = 30° 2a/f; =1:5, 5 =10 um and f, = 50 mm

M 2 4 6 8
Alfo 1.38' 1.04' 097 0.95'
S 0.41 0.75 0.84 0.88
A (¢m) 19.9 14.9 13.8 135
B A7 /12 15 17

on an appropriate selection of the number of binary masks (M — 1) used in the photolithographic
fabrication of the plane corrector. For example, Table 1 indicates that for an aperture ratio of 1:5,
to achieve angular coverage up to 30° at an angular resolution of 1.5 minutes of arc it would be
sufficient to make é =25 um and M =8, which is well within the capabilities of computer optics

technology.
A software package developed for image processing and digital holography [8] was used to
create a planar compensator of aberrations for the planoconvex lens specified as above (n = 1.6).
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